Unfolding proteins by external forces and temperature: the importance of topology and energetics.

نویسندگان

  • E Paci
  • M Karplus
چکیده

Unfolding of proteins by forced stretching with atomic force microscopy or laser tweezer experiments complements more classical techniques using chemical denaturants or temperature. Forced unfolding is of particular interest for proteins that are under mechanical stress in their biological function. For beta-sandwich proteins (a fibronectin type III and an immunoglobulin domain), both of which appear in the muscle protein titin, the results of stretching simulations show important differences from temperature-induced unfolding, but there are common features that point to the existence of folding cores. Intermediates detected by comparing unfolding with a biasing perturbation and a constant pulling force are not evident in temperature-induced unfolding. For an alpha-helical domain (alpha-spectrin), which forms part of the cytoskeleton, there is little commonality in the pathways from unfolding induced by stretching and temperature. Comparison of the forced unfolding of the two beta-sandwich proteins and two alpha-helical proteins (the alpha-spectrin domain and an acyl-coenzyme A-binding protein) highlights important differences within and between protein classes that are related to the folding topologies and the relative stability of the various structural elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Native topology determines force-induced unfolding pathways in globular proteins.

Single-molecule manipulation techniques reveal that stretching unravels individually folded domains in the muscle protein titin and the extracellular matrix protein tenascin. These elastic proteins contain tandem repeats of folded domains with beta-sandwich architecture. Herein, we propose by stretching two model sequences (S1 and S2) with four-stranded beta-barrel topology that unfolding force...

متن کامل

Toward a molecular understanding of the anisotropic response of proteins to external forces: insights from elastic network models.

With recent advances in single-molecule manipulation techniques, it is now possible to measure the mechanical resistance of proteins to external pulling forces applied at specific positions. Remarkably, such recent studies demonstrated that the pulling/stretching forces required to initiate unfolding vary considerably depending on the location of the application of the forces, unraveling residu...

متن کامل

Thermal unfolding of proteins.

Thermal unfolding of proteins is compared to folding and mechanical stretching in a simple topology-based dynamical model. We define the unfolding time and demonstrate its low-temperature divergence. Below a characteristic temperature, contacts break at separate time scales and unfolding proceeds approximately in a way reverse to folding. Features in these scenarios agree with experiments and a...

متن کامل

Mechanical resistance of proteins explained using simple molecular models.

Recent experiments have demonstrated that proteins unfold when two atoms are mechanically pulled apart, and that this process is different to when heated or when a chemical denaturant is added to the solution. Experiments have also shown that the response of proteins to external forces is very diverse, some of them being "hard," and others "soft." Mechanical resistance originates from the prese...

متن کامل

Native flexibility of structurally homologous proteins: insights from anisotropic network model

BACKGROUND Single-molecule microscopic experiments can measure the mechanical response of proteins to pulling forces applied externally along different directions (inducing different residue pairs in the proteins by uniaxial tension). This response to external forces away from equilibrium should in principle, correlate with the flexibility or stiffness of proteins in their folded states. Here, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 97 12  شماره 

صفحات  -

تاریخ انتشار 2000